Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vet Parasitol ; 325: 110092, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38070383

RESUMEN

Armigeres subalbatus, a mosquito species widely found in Thailand and other Asian countries, serves as a vector for filarial parasites, affecting both humans and animals. However, the surveillance of this vector is complicated because of its morphological similarity to two other species, Armigeres dohami and Armigeres kesseli. To differentiate these morphologically similar species, our study employed both wing geometric morphometrics (GM) and DNA barcoding, offering a comprehensive approach to accurately identify these closely related Armigeres species in Thailand. Our GM analyses based on shape demonstrated significant accuracy in differentiating Armigeres species. Specifically, the outline-based GM method focusing on the 3rd posterior cell exhibited an accuracy rate of 82.61%, closely followed by the landmark-based GM method with 81.54%. Both these GM techniques effectively distinguished Ar. subalbatus from Ar. dohami and Ar. kesseli. Regarding DNA barcoding, our investigation of pairwise intra- and interspecific divergences revealed a "barcoding gap". Furthermore, the results of species confirmation using both species delimitation methods including the automatic barcode gap discovery method (ABGD) and the Multi-rate Poisson tree process (mPTP) were consistent with those of morphological identification, sequence comparisons with the GenBank and Barcode of Life Data System (BOLD) databases, and the neighbor-joining tree construction. These consistent results emphasize the efficacy of DNA barcoding in the precise identification of Armigeres species.


Asunto(s)
Culicidae , Humanos , Animales , Culicidae/genética , Culicidae/parasitología , Código de Barras del ADN Taxonómico/métodos , Código de Barras del ADN Taxonómico/veterinaria , Tailandia , Mosquitos Vectores
2.
Heliyon ; 8(10): e11261, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36339998

RESUMEN

Anopheles members of the Barbirostris complex are important vectors of malaria in Thailand. However, they are morphologically indistinguishable because they are closely related species. In this study, wing geometric morphometrics (GM) and DNA barcoding based on the cytochrome c oxidase subunit 1 (C O I) gene were applied to differentiate cryptic species of the Barbirostris complex in Thailand. Three cryptic species of the Barbirostris complex, Anopheles dissidens (19.44%), Anopheles saeungae (24.54%), and Anopheles wejchoochotei (56.02%) were initially identified using the multiplex polymerase chain reaction assay. DNA barcoding analyses showed low intraspecific distances (range, 0.27%-0.63%) and high interspecific distances (range, 1.92%-3.68%), consistent with the phylogenetic analyses that showed clear species groups. While wing size and shape analyses based on landmark-based GM indicated differences between three species (p < 0.05). The cross-validated reclassification revealed that the overall efficacy of wing size analysis for species identification of the Barbirostris complex was less than the wing shape analysis (56.43% vs. 74.29% total performance). Therefore, this study's results are guidelines for applying modern techniques to identify members within the Barbirostris complex, which are still difficult to distinguish by morphology-based identification and contribute to further appropriate malaria control.

3.
Exp Parasitol ; 238: 108281, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35594932

RESUMEN

Copro-microscopic diagnostic methods are the most common approach for screening patients with parasitic infections. However, expertise is required to identify helminthic eggs from fecal specimens. Consequently, new methods are required to support accurate species identification. Novel technologies have recently been developed for the classification of organisms, including geometric morphometric (GM) approaches. In this study, the outline-based GM approach was used to distinguish the eggs of 12 common human parasite species, including Ascaris lumbricoides, Trichuris trichiura, Enterobius vermicularis, hookworm, Capillaria philippinensis, Opisthorchis spp., Fasciola spp., Paragonimus spp., Schistosoma mekongi, Taenia spp., Hymenolepis diminuta and Hymenolepis nana. The GM analysis revealed that the size cannot be used as the main variable in the identification of parasite species at the egg stage, producing only 30.18% overall accuracy. However, comparisons of shape based on the Mahalanobis distances between pairs of parasite species showed significant differences in all pairs (p < 0.05). The shape analysis produced 84.29% overall accuracy. This is the first time that outline-based GM has been preliminarily confirmed as a valuable approach to support copro-microscopic analysis, in order to effectively screen helminth eggs. However, further studies with a larger set of helminth eggs and artefacts should be carried out to increase confidence in the identification of parasite species in the absence of local experts.


Asunto(s)
Helmintos , Parásitos , Taenia , Animales , Heces/parasitología , Humanos , Recuento de Huevos de Parásitos , Trichuris
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...